NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.43 GIF version

Theorem 19.43 1605
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.)
Assertion
Ref Expression
19.43 (x(φ ψ) ↔ (xφ xψ))

Proof of Theorem 19.43
StepHypRef Expression
1 df-or 359 . . . 4 ((φ ψ) ↔ (¬ φψ))
21exbii 1582 . . 3 (x(φ ψ) ↔ xφψ))
3 19.35 1600 . . 3 (xφψ) ↔ (x ¬ φxψ))
4 alnex 1543 . . . 4 (x ¬ φ ↔ ¬ xφ)
54imbi1i 315 . . 3 ((x ¬ φxψ) ↔ (¬ xφxψ))
62, 3, 53bitri 262 . 2 (x(φ ψ) ↔ (¬ xφxψ))
7 df-or 359 . 2 ((xφ xψ) ↔ (¬ xφxψ))
86, 7bitr4i 243 1 (x(φ ψ) ↔ (xφ xψ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wo 357  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-ex 1542
This theorem is referenced by:  19.34  1663  19.44  1877  19.45  1878  rexun  3444  unipr  3906  uniun  3911  opeq  4620  unopab  4639  dmun  4913  coundi  5083  coundir  5084
  Copyright terms: Public domain W3C validator