New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.43 | GIF version |
Description: Theorem 19.43 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.43 | ⊢ (∃x(φ ∨ ψ) ↔ (∃xφ ∨ ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-or 359 | . . . 4 ⊢ ((φ ∨ ψ) ↔ (¬ φ → ψ)) | |
2 | 1 | exbii 1582 | . . 3 ⊢ (∃x(φ ∨ ψ) ↔ ∃x(¬ φ → ψ)) |
3 | 19.35 1600 | . . 3 ⊢ (∃x(¬ φ → ψ) ↔ (∀x ¬ φ → ∃xψ)) | |
4 | alnex 1543 | . . . 4 ⊢ (∀x ¬ φ ↔ ¬ ∃xφ) | |
5 | 4 | imbi1i 315 | . . 3 ⊢ ((∀x ¬ φ → ∃xψ) ↔ (¬ ∃xφ → ∃xψ)) |
6 | 2, 3, 5 | 3bitri 262 | . 2 ⊢ (∃x(φ ∨ ψ) ↔ (¬ ∃xφ → ∃xψ)) |
7 | df-or 359 | . 2 ⊢ ((∃xφ ∨ ∃xψ) ↔ (¬ ∃xφ → ∃xψ)) | |
8 | 6, 7 | bitr4i 243 | 1 ⊢ (∃x(φ ∨ ψ) ↔ (∃xφ ∨ ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∨ wo 357 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-ex 1542 |
This theorem is referenced by: 19.34 1663 19.44 1877 19.45 1878 rexun 3444 unipr 3906 uniun 3911 opeq 4620 unopab 4639 dmun 4913 coundi 5083 coundir 5084 |
Copyright terms: Public domain | W3C validator |