NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  19.39 GIF version

Theorem 19.39 1661
Description: Theorem 19.39 of [Margaris] p. 90. (Contributed by NM, 5-Aug-1993.)
Assertion
Ref Expression
19.39 ((xφxψ) → x(φψ))

Proof of Theorem 19.39
StepHypRef Expression
1 19.2 1659 . . 3 (xφxφ)
21imim1i 54 . 2 ((xφxψ) → (xφxψ))
3 19.35 1600 . 2 (x(φψ) ↔ (xφxψ))
42, 3sylibr 203 1 ((xφxψ) → x(φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-9 1654
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator