New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 19.35 | GIF version |
Description: Theorem 19.35 of [Margaris] p. 90. This theorem is useful for moving an implication (in the form of the right-hand side) into the scope of a single existential quantifier. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 27-Jun-2014.) |
Ref | Expression |
---|---|
19.35 | ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1593 | . . . 4 ⊢ (∀x(φ ∧ ¬ ψ) ↔ (∀xφ ∧ ∀x ¬ ψ)) | |
2 | annim 414 | . . . . 5 ⊢ ((φ ∧ ¬ ψ) ↔ ¬ (φ → ψ)) | |
3 | 2 | albii 1566 | . . . 4 ⊢ (∀x(φ ∧ ¬ ψ) ↔ ∀x ¬ (φ → ψ)) |
4 | alnex 1543 | . . . . 5 ⊢ (∀x ¬ ψ ↔ ¬ ∃xψ) | |
5 | 4 | anbi2i 675 | . . . 4 ⊢ ((∀xφ ∧ ∀x ¬ ψ) ↔ (∀xφ ∧ ¬ ∃xψ)) |
6 | 1, 3, 5 | 3bitr3i 266 | . . 3 ⊢ (∀x ¬ (φ → ψ) ↔ (∀xφ ∧ ¬ ∃xψ)) |
7 | alnex 1543 | . . 3 ⊢ (∀x ¬ (φ → ψ) ↔ ¬ ∃x(φ → ψ)) | |
8 | annim 414 | . . 3 ⊢ ((∀xφ ∧ ¬ ∃xψ) ↔ ¬ (∀xφ → ∃xψ)) | |
9 | 6, 7, 8 | 3bitr3i 266 | . 2 ⊢ (¬ ∃x(φ → ψ) ↔ ¬ (∀xφ → ∃xψ)) |
10 | 9 | con4bii 288 | 1 ⊢ (∃x(φ → ψ) ↔ (∀xφ → ∃xψ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 176 ∧ wa 358 ∀wal 1540 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 |
This theorem is referenced by: 19.35i 1601 19.35ri 1602 19.25 1603 19.43 1605 speimfw 1645 19.39 1661 19.24 1662 19.36 1871 19.37 1873 sbequi 2059 |
Copyright terms: Public domain | W3C validator |