NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  2falsed GIF version

Theorem 2falsed 340
Description: Two falsehoods are equivalent (deduction rule). (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
2falsed.1 (φ → ¬ ψ)
2falsed.2 (φ → ¬ χ)
Assertion
Ref Expression
2falsed (φ → (ψχ))

Proof of Theorem 2falsed
StepHypRef Expression
1 2falsed.1 . . 3 (φ → ¬ ψ)
21pm2.21d 98 . 2 (φ → (ψχ))
3 2falsed.2 . . 3 (φ → ¬ χ)
43pm2.21d 98 . 2 (φ → (χψ))
52, 4impbid 183 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  pm5.21ni  341  bianfd  892  abvor0  3567  eqfnfv  5392
  Copyright terms: Public domain W3C validator