| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 2false | GIF version | ||
| Description: Two falsehoods are equivalent. (Contributed by NM, 4-Apr-2005.) (Proof shortened by Wolf Lammen, 19-May-2013.) |
| Ref | Expression |
|---|---|
| 2false.1 | ⊢ ¬ φ |
| 2false.2 | ⊢ ¬ ψ |
| Ref | Expression |
|---|---|
| 2false | ⊢ (φ ↔ ψ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2false.1 | . . 3 ⊢ ¬ φ | |
| 2 | 2false.2 | . . 3 ⊢ ¬ ψ | |
| 3 | 1, 2 | 2th 230 | . 2 ⊢ (¬ φ ↔ ¬ ψ) |
| 4 | 3 | con4bii 288 | 1 ⊢ (φ ↔ ψ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 |
| This theorem is referenced by: bianfi 891 bifal 1327 iun0 4023 0iun 4024 xp0r 4843 cnv0 5032 co02 5093 |
| Copyright terms: Public domain | W3C validator |