Step | Hyp | Ref
| Expression |
1 | | fveq1 5328 |
. . 3
⊢ (F = G →
(F ‘x) = (G
‘x)) |
2 | 1 | ralrimivw 2699 |
. 2
⊢ (F = G →
∀x
∈ A
(F ‘x) = (G
‘x)) |
3 | | pm2.27 35 |
. . . . . . . . 9
⊢ (x ∈ A → ((x
∈ A
→ (F ‘x) = (G
‘x)) → (F ‘x) =
(G ‘x))) |
4 | 3 | adantl 452 |
. . . . . . . 8
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → ((x
∈ A
→ (F ‘x) = (G
‘x)) → (F ‘x) =
(G ‘x))) |
5 | | eqeq1 2359 |
. . . . . . . . 9
⊢ ((F ‘x) =
(G ‘x) → ((F
‘x) = y ↔ (G
‘x) = y)) |
6 | | fnopfvb 5360 |
. . . . . . . . . . 11
⊢ ((F Fn A ∧ x ∈ A) →
((F ‘x) = y ↔
〈x,
y〉 ∈ F)) |
7 | 6 | adantlr 695 |
. . . . . . . . . 10
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → ((F
‘x) = y ↔ 〈x, y〉 ∈ F)) |
8 | | fnopfvb 5360 |
. . . . . . . . . . 11
⊢ ((G Fn A ∧ x ∈ A) →
((G ‘x) = y ↔
〈x,
y〉 ∈ G)) |
9 | 8 | adantll 694 |
. . . . . . . . . 10
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → ((G
‘x) = y ↔ 〈x, y〉 ∈ G)) |
10 | 7, 9 | bibi12d 312 |
. . . . . . . . 9
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → (((F
‘x) = y ↔ (G
‘x) = y) ↔ (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G))) |
11 | 5, 10 | syl5ib 210 |
. . . . . . . 8
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → ((F
‘x) = (G ‘x)
→ (〈x, y〉 ∈ F ↔ 〈x, y〉 ∈ G))) |
12 | 4, 11 | syld 40 |
. . . . . . 7
⊢ (((F Fn A ∧ G Fn A) ∧ x ∈ A) → ((x
∈ A
→ (F ‘x) = (G
‘x)) → (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G))) |
13 | 12 | expcom 424 |
. . . . . 6
⊢ (x ∈ A → ((F Fn
A ∧
G Fn A)
→ ((x ∈ A →
(F ‘x) = (G
‘x)) → (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G)))) |
14 | | opeldm 4911 |
. . . . . . . . . . . . 13
⊢ (〈x, y〉 ∈ F →
x ∈ dom
F) |
15 | | fndm 5183 |
. . . . . . . . . . . . . 14
⊢ (F Fn A →
dom F = A) |
16 | 15 | eleq2d 2420 |
. . . . . . . . . . . . 13
⊢ (F Fn A →
(x ∈ dom
F ↔ x ∈ A)) |
17 | 14, 16 | syl5ib 210 |
. . . . . . . . . . . 12
⊢ (F Fn A →
(〈x,
y〉 ∈ F →
x ∈
A)) |
18 | 17 | adantr 451 |
. . . . . . . . . . 11
⊢ ((F Fn A ∧ G Fn A) → (〈x, y〉 ∈ F →
x ∈
A)) |
19 | 18 | con3d 125 |
. . . . . . . . . 10
⊢ ((F Fn A ∧ G Fn A) → (¬ x ∈ A → ¬ 〈x, y〉 ∈ F)) |
20 | 19 | impcom 419 |
. . . . . . . . 9
⊢ ((¬ x ∈ A ∧ (F Fn A ∧ G Fn A)) → ¬ 〈x, y〉 ∈ F) |
21 | | opeldm 4911 |
. . . . . . . . . . . . 13
⊢ (〈x, y〉 ∈ G →
x ∈ dom
G) |
22 | | fndm 5183 |
. . . . . . . . . . . . . 14
⊢ (G Fn A →
dom G = A) |
23 | 22 | eleq2d 2420 |
. . . . . . . . . . . . 13
⊢ (G Fn A →
(x ∈ dom
G ↔ x ∈ A)) |
24 | 21, 23 | syl5ib 210 |
. . . . . . . . . . . 12
⊢ (G Fn A →
(〈x,
y〉 ∈ G →
x ∈
A)) |
25 | 24 | adantl 452 |
. . . . . . . . . . 11
⊢ ((F Fn A ∧ G Fn A) → (〈x, y〉 ∈ G →
x ∈
A)) |
26 | 25 | con3d 125 |
. . . . . . . . . 10
⊢ ((F Fn A ∧ G Fn A) → (¬ x ∈ A → ¬ 〈x, y〉 ∈ G)) |
27 | 26 | impcom 419 |
. . . . . . . . 9
⊢ ((¬ x ∈ A ∧ (F Fn A ∧ G Fn A)) → ¬ 〈x, y〉 ∈ G) |
28 | 20, 27 | 2falsed 340 |
. . . . . . . 8
⊢ ((¬ x ∈ A ∧ (F Fn A ∧ G Fn A)) → (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G)) |
29 | 28 | ex 423 |
. . . . . . 7
⊢ (¬ x ∈ A → ((F Fn
A ∧
G Fn A)
→ (〈x, y〉 ∈ F ↔ 〈x, y〉 ∈ G))) |
30 | 29 | a1dd 42 |
. . . . . 6
⊢ (¬ x ∈ A → ((F Fn
A ∧
G Fn A)
→ ((x ∈ A →
(F ‘x) = (G
‘x)) → (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G)))) |
31 | 13, 30 | pm2.61i 156 |
. . . . 5
⊢ ((F Fn A ∧ G Fn A) → ((x
∈ A
→ (F ‘x) = (G
‘x)) → (〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G))) |
32 | 31 | alrimdv 1633 |
. . . 4
⊢ ((F Fn A ∧ G Fn A) → ((x
∈ A
→ (F ‘x) = (G
‘x)) → ∀y(〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G))) |
33 | 32 | alimdv 1621 |
. . 3
⊢ ((F Fn A ∧ G Fn A) → (∀x(x ∈ A → (F
‘x) = (G ‘x))
→ ∀x∀y(〈x, y〉 ∈ F ↔ 〈x, y〉 ∈ G))) |
34 | | df-ral 2620 |
. . 3
⊢ (∀x ∈ A (F ‘x) =
(G ‘x) ↔ ∀x(x ∈ A → (F
‘x) = (G ‘x))) |
35 | | eqrel 4846 |
. . 3
⊢ (F = G ↔
∀x∀y(〈x, y〉 ∈ F ↔
〈x,
y〉 ∈ G)) |
36 | 33, 34, 35 | 3imtr4g 261 |
. 2
⊢ ((F Fn A ∧ G Fn A) → (∀x ∈ A (F ‘x) =
(G ‘x) → F =
G)) |
37 | 2, 36 | impbid2 195 |
1
⊢ ((F Fn A ∧ G Fn A) → (F =
G ↔ ∀x ∈ A (F ‘x) =
(G ‘x))) |