NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pm2.21d GIF version

Theorem pm2.21d 98
Description: A contradiction implies anything. Deduction from pm2.21 100. (Contributed by NM, 10-Feb-1996.)
Hypothesis
Ref Expression
pm2.21d.1 (φ → ¬ ψ)
Assertion
Ref Expression
pm2.21d (φ → (ψχ))

Proof of Theorem pm2.21d
StepHypRef Expression
1 pm2.21d.1 . . 3 (φ → ¬ ψ)
21a1d 22 . 2 (φ → (¬ χ → ¬ ψ))
32con4d 97 1 (φ → (ψχ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem is referenced by:  pm2.21dd  99  pm2.21  100  2falsed  340  pm5.14  856  ecase2d  906  prlem1  928  sbc2or  3055  eq0rdv  3586  rzal  3652  ssofss  4077  tfinltfin  4502  clos1nrel  5887  nchoicelem12  6301
  Copyright terms: Public domain W3C validator