NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  bianfd GIF version

Theorem bianfd 892
Description: A wff conjoined with falsehood is false. (Contributed by NM, 27-Mar-1995.) (Proof shortened by Wolf Lammen, 5-Nov-2013.)
Hypothesis
Ref Expression
bianfd.1 (φ → ¬ ψ)
Assertion
Ref Expression
bianfd (φ → (ψ ↔ (ψ χ)))

Proof of Theorem bianfd
StepHypRef Expression
1 bianfd.1 . 2 (φ → ¬ ψ)
21intnanrd 883 . 2 (φ → ¬ (ψ χ))
31, 22falsed 340 1 (φ → (ψ ↔ (ψ χ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  eueq2  3011  eueq3  3012
  Copyright terms: Public domain W3C validator