NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3ad2antl2 GIF version

Theorem 3ad2antl2 1118
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 4-Aug-2007.)
Hypothesis
Ref Expression
3ad2antl.1 ((φ χ) → θ)
Assertion
Ref Expression
3ad2antl2 (((ψ φ τ) χ) → θ)

Proof of Theorem 3ad2antl2
StepHypRef Expression
1 3ad2antl.1 . . 3 ((φ χ) → θ)
21adantlr 695 . 2 (((φ τ) χ) → θ)
323adantl1 1111 1 (((ψ φ τ) χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  nclenn  6250  lecadd2  6267
  Copyright terms: Public domain W3C validator