New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantlr | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
adantlr | ⊢ (((φ ∧ θ) ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((φ ∧ θ) → φ) | |
2 | adant2.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | sylan 457 | 1 ⊢ (((φ ∧ θ) ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad2antrr 706 ad2ant2r 727 ad2ant2rl 729 pm2.61ddan 767 pm2.61dda 768 3ad2antl1 1117 3ad2antl2 1118 3adant1r 1175 ax11eq 2193 ax11el 2194 ax11indalem 2197 ax11inda2ALT 2198 nfeud2 2216 pm2.61da2ne 2596 pm2.61da3ne 2597 uneqdifeq 3639 intab 3957 leltfintr 4459 phi11lem1 4596 phialllem1 4617 fun11iun 5306 eqfnfv 5393 fconst2g 5453 isocnv 5492 isotr 5496 fvfullfunlem3 5864 dflec2 6211 tlecg 6231 ncslesuc 6268 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |