New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3adantl1 | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 24-Feb-2005.) |
Ref | Expression |
---|---|
3adantl.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
3adantl1 | ⊢ (((τ ∧ φ ∧ ψ) ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 954 | . 2 ⊢ ((τ ∧ φ ∧ ψ) → (φ ∧ ψ)) | |
2 | 3adantl.1 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
3 | 1, 2 | sylan 457 | 1 ⊢ (((τ ∧ φ ∧ ψ) ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3ad2antl2 1118 3ad2antl3 1119 |
Copyright terms: Public domain | W3C validator |