New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3ad2antr1 | GIF version |
Description: Deduction adding conjuncts to antecedent. (Contributed by NM, 25-Dec-2007.) |
Ref | Expression |
---|---|
3ad2antl.1 | ⊢ ((φ ∧ χ) → θ) |
Ref | Expression |
---|---|
3ad2antr1 | ⊢ ((φ ∧ (χ ∧ ψ ∧ τ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ad2antl.1 | . . 3 ⊢ ((φ ∧ χ) → θ) | |
2 | 1 | adantrr 697 | . 2 ⊢ ((φ ∧ (χ ∧ ψ)) → θ) |
3 | 2 | 3adantr3 1116 | 1 ⊢ ((φ ∧ (χ ∧ ψ ∧ τ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |