New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantrr | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
adantrr | ⊢ ((φ ∧ (ψ ∧ θ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((ψ ∧ θ) → ψ) | |
2 | adant2.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (ψ ∧ θ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad2ant2r 727 ad2ant2lr 728 consensus 925 3ad2antr1 1120 sbcom 2089 ax11eq 2193 ax11el 2194 nndisjeq 4429 tfinpw1 4494 tfinsuc 4498 sfindbl 4530 vfinspsslem1 4550 isocnv 5491 isores2 5493 isoini 5497 f1oiso2 5500 ncspw1eu 6159 addccan2nc 6265 frecxp 6314 fnfrec 6320 |
Copyright terms: Public domain | W3C validator |