New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > adantrr | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 4-May-1994.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
Ref | Expression |
---|---|
adant2.1 | ⊢ ((φ ∧ ψ) → χ) |
Ref | Expression |
---|---|
adantrr | ⊢ ((φ ∧ (ψ ∧ θ)) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 443 | . 2 ⊢ ((ψ ∧ θ) → ψ) | |
2 | adant2.1 | . 2 ⊢ ((φ ∧ ψ) → χ) | |
3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (ψ ∧ θ)) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: ad2ant2r 727 ad2ant2lr 728 consensus 925 3ad2antr1 1120 sbcom 2089 ax11eq 2193 ax11el 2194 nndisjeq 4430 tfinpw1 4495 tfinsuc 4499 sfindbl 4531 vfinspsslem1 4551 isocnv 5492 isores2 5494 isoini 5498 f1oiso2 5501 ncspw1eu 6160 addccan2nc 6266 frecxp 6315 fnfrec 6321 |
Copyright terms: Public domain | W3C validator |