New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3adantr3 | GIF version |
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
Ref | Expression |
---|---|
3adantr.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
Ref | Expression |
---|---|
3adantr3 | ⊢ ((φ ∧ (ψ ∧ χ ∧ τ)) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 952 | . 2 ⊢ ((ψ ∧ χ ∧ τ) → (ψ ∧ χ)) | |
2 | 3adantr.1 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ τ)) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3ad2antr1 1120 3ad2antr2 1121 3adant3r3 1162 |
Copyright terms: Public domain | W3C validator |