| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3adantr3 | GIF version | ||
| Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 27-Apr-2005.) |
| Ref | Expression |
|---|---|
| 3adantr.1 | ⊢ ((φ ∧ (ψ ∧ χ)) → θ) |
| Ref | Expression |
|---|---|
| 3adantr3 | ⊢ ((φ ∧ (ψ ∧ χ ∧ τ)) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa 952 | . 2 ⊢ ((ψ ∧ χ ∧ τ) → (ψ ∧ χ)) | |
| 2 | 3adantr.1 | . 2 ⊢ ((φ ∧ (ψ ∧ χ)) → θ) | |
| 3 | 1, 2 | sylan2 460 | 1 ⊢ ((φ ∧ (ψ ∧ χ ∧ τ)) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3ad2antr1 1120 3ad2antr2 1121 3adant3r3 1162 |
| Copyright terms: Public domain | W3C validator |