NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3an1rs GIF version

Theorem 3an1rs 1163
Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.)
Hypothesis
Ref Expression
3an1rs.1 (((φ ψ χ) θ) → τ)
Assertion
Ref Expression
3an1rs (((φ ψ θ) χ) → τ)

Proof of Theorem 3an1rs
StepHypRef Expression
1 3an1rs.1 . . . . . 6 (((φ ψ χ) θ) → τ)
21ex 423 . . . . 5 ((φ ψ χ) → (θτ))
323exp 1150 . . . 4 (φ → (ψ → (χ → (θτ))))
43com34 77 . . 3 (φ → (ψ → (θ → (χτ))))
543imp 1145 . 2 ((φ ψ θ) → (χτ))
65imp 418 1 (((φ ψ θ) χ) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator