New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3an1rs | GIF version |
Description: Swap conjuncts. (Contributed by NM, 16-Dec-2007.) |
Ref | Expression |
---|---|
3an1rs.1 | ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) |
Ref | Expression |
---|---|
3an1rs | ⊢ (((φ ∧ ψ ∧ θ) ∧ χ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3an1rs.1 | . . . . . 6 ⊢ (((φ ∧ ψ ∧ χ) ∧ θ) → τ) | |
2 | 1 | ex 423 | . . . . 5 ⊢ ((φ ∧ ψ ∧ χ) → (θ → τ)) |
3 | 2 | 3exp 1150 | . . . 4 ⊢ (φ → (ψ → (χ → (θ → τ)))) |
4 | 3 | com34 77 | . . 3 ⊢ (φ → (ψ → (θ → (χ → τ)))) |
5 | 4 | 3imp 1145 | . 2 ⊢ ((φ ∧ ψ ∧ θ) → (χ → τ)) |
6 | 5 | imp 418 | 1 ⊢ (((φ ∧ ψ ∧ θ) ∧ χ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |