NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  com34 GIF version

Theorem com34 77
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1 (φ → (ψ → (χ → (θτ))))
Assertion
Ref Expression
com34 (φ → (ψ → (θ → (χτ))))

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2 (φ → (ψ → (χ → (θτ))))
2 pm2.04 76 . 2 ((χ → (θτ)) → (θ → (χτ)))
31, 2syl6 29 1 (φ → (ψ → (θ → (χτ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  78  com35  84  3an1rs  1163  rspct  2949  sfintfin  4533  funssres  5145  f1o2d  5728  fnfrec  6321
  Copyright terms: Public domain W3C validator