NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anan32 GIF version

Theorem 3anan32 946
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Assertion
Ref Expression
3anan32 ((φ ψ χ) ↔ ((φ χ) ψ))

Proof of Theorem 3anan32
StepHypRef Expression
1 df-3an 936 . 2 ((φ ψ χ) ↔ ((φ ψ) χ))
2 an32 773 . 2 (((φ ψ) χ) ↔ ((φ χ) ψ))
31, 2bitri 240 1 ((φ ψ χ) ↔ ((φ χ) ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator