New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3anan12 | GIF version |
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) |
Ref | Expression |
---|---|
3anan12 | ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ (φ ∧ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3ancoma 941 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) | |
2 | 3anass 938 | . 2 ⊢ ((ψ ∧ φ ∧ χ) ↔ (ψ ∧ (φ ∧ χ))) | |
3 | 1, 2 | bitri 240 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ (φ ∧ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 2reu5lem3 3044 |
Copyright terms: Public domain | W3C validator |