NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3anan12 GIF version

Theorem 3anan12 947
Description: Convert triple conjunction to conjunction, then commute. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Proof shortened by Andrew Salmon, 14-Jun-2011.)
Assertion
Ref Expression
3anan12 ((φ ψ χ) ↔ (ψ (φ χ)))

Proof of Theorem 3anan12
StepHypRef Expression
1 3ancoma 941 . 2 ((φ ψ χ) ↔ (ψ φ χ))
2 3anass 938 . 2 ((ψ φ χ) ↔ (ψ (φ χ)))
31, 2bitri 240 1 ((φ ψ χ) ↔ (ψ (φ χ)))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  2reu5lem3  3044
  Copyright terms: Public domain W3C validator