NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3coml GIF version

Theorem 3coml 1158
Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((φ ψ χ) → θ)
Assertion
Ref Expression
3coml ((ψ χ φ) → θ)

Proof of Theorem 3coml
StepHypRef Expression
1 3exp.1 . . 3 ((φ ψ χ) → θ)
213com23 1157 . 2 ((φ χ ψ) → θ)
323com13 1156 1 ((ψ χ φ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3comr  1159  addccan1  4561  addcdir  6252
  Copyright terms: Public domain W3C validator