| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3coml | GIF version | ||
| Description: Commutation in antecedent. Rotate left. (Contributed by NM, 28-Jan-1996.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| 3coml | ⊢ ((ψ ∧ χ ∧ φ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
| 2 | 1 | 3com23 1157 | . 2 ⊢ ((φ ∧ χ ∧ ψ) → θ) |
| 3 | 2 | 3com13 1156 | 1 ⊢ ((ψ ∧ χ ∧ φ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3comr 1159 addccan1 4561 addcdir 6252 |
| Copyright terms: Public domain | W3C validator |