NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3com13 GIF version

Theorem 3com13 1156
Description: Commutation in antecedent. Swap 1st and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((φ ψ χ) → θ)
Assertion
Ref Expression
3com13 ((χ ψ φ) → θ)

Proof of Theorem 3com13
StepHypRef Expression
1 3anrev 945 . 2 ((χ ψ φ) ↔ (φ ψ χ))
2 3exp.1 . 2 ((φ ψ χ) → θ)
31, 2sylbi 187 1 ((χ ψ φ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3coml  1158  3adant3l  1178  3adant3r  1179  syld3an1  1228
  Copyright terms: Public domain W3C validator