New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3com23 | GIF version |
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((φ ∧ ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
3com23 | ⊢ ((φ ∧ χ ∧ ψ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . . 4 ⊢ ((φ ∧ ψ ∧ χ) → θ) | |
2 | 1 | 3exp 1150 | . . 3 ⊢ (φ → (ψ → (χ → θ))) |
3 | 2 | com23 72 | . 2 ⊢ (φ → (χ → (ψ → θ))) |
4 | 3 | 3imp 1145 | 1 ⊢ ((φ ∧ χ ∧ ψ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3coml 1158 syld3an2 1229 3anidm13 1240 eqreu 3029 |
Copyright terms: Public domain | W3C validator |