NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3com23 GIF version

Theorem 3com23 1157
Description: Commutation in antecedent. Swap 2nd and 3rd. (Contributed by NM, 28-Jan-1996.)
Hypothesis
Ref Expression
3exp.1 ((φ ψ χ) → θ)
Assertion
Ref Expression
3com23 ((φ χ ψ) → θ)

Proof of Theorem 3com23
StepHypRef Expression
1 3exp.1 . . . 4 ((φ ψ χ) → θ)
213exp 1150 . . 3 (φ → (ψ → (χθ)))
32com23 72 . 2 (φ → (χ → (ψθ)))
433imp 1145 1 ((φ χ ψ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3coml  1158  syld3an2  1229  3anidm13  1240  eqreu  3029
  Copyright terms: Public domain W3C validator