NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3impd GIF version

Theorem 3impd 1165
Description: Importation deduction for triple conjunction. (Contributed by NM, 26-Oct-2006.)
Hypothesis
Ref Expression
3imp1.1 (φ → (ψ → (χ → (θτ))))
Assertion
Ref Expression
3impd (φ → ((ψ χ θ) → τ))

Proof of Theorem 3impd
StepHypRef Expression
1 3imp1.1 . . . 4 (φ → (ψ → (χ → (θτ))))
21com4l 78 . . 3 (ψ → (χ → (θ → (φτ))))
323imp 1145 . 2 ((ψ χ θ) → (φτ))
43com12 27 1 (φ → ((ψ χ θ) → τ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  3imp2  1166  3impexp  1366  fununiq  5518  funsi  5521  oprabid  5551  fntxp  5805  fnpprod  5844
  Copyright terms: Public domain W3C validator