New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jcad | GIF version |
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.) |
Ref | Expression |
---|---|
3jcad.1 | ⊢ (φ → (ψ → χ)) |
3jcad.2 | ⊢ (φ → (ψ → θ)) |
3jcad.3 | ⊢ (φ → (ψ → τ)) |
Ref | Expression |
---|---|
3jcad | ⊢ (φ → (ψ → (χ ∧ θ ∧ τ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jcad.1 | . . . 4 ⊢ (φ → (ψ → χ)) | |
2 | 1 | imp 418 | . . 3 ⊢ ((φ ∧ ψ) → χ) |
3 | 3jcad.2 | . . . 4 ⊢ (φ → (ψ → θ)) | |
4 | 3 | imp 418 | . . 3 ⊢ ((φ ∧ ψ) → θ) |
5 | 3jcad.3 | . . . 4 ⊢ (φ → (ψ → τ)) | |
6 | 5 | imp 418 | . . 3 ⊢ ((φ ∧ ψ) → τ) |
7 | 2, 4, 6 | 3jca 1132 | . 2 ⊢ ((φ ∧ ψ) → (χ ∧ θ ∧ τ)) |
8 | 7 | ex 423 | 1 ⊢ (φ → (ψ → (χ ∧ θ ∧ τ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |