NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  3jcad GIF version

Theorem 3jcad 1133
Description: Deduction conjoining the consequents of three implications. (Contributed by NM, 25-Sep-2005.)
Hypotheses
Ref Expression
3jcad.1 (φ → (ψχ))
3jcad.2 (φ → (ψθ))
3jcad.3 (φ → (ψτ))
Assertion
Ref Expression
3jcad (φ → (ψ → (χ θ τ)))

Proof of Theorem 3jcad
StepHypRef Expression
1 3jcad.1 . . . 4 (φ → (ψχ))
21imp 418 . . 3 ((φ ψ) → χ)
3 3jcad.2 . . . 4 (φ → (ψθ))
43imp 418 . . 3 ((φ ψ) → θ)
5 3jcad.3 . . . 4 (φ → (ψτ))
65imp 418 . . 3 ((φ ψ) → τ)
72, 4, 63jca 1132 . 2 ((φ ψ) → (χ θ τ))
87ex 423 1 (φ → (ψ → (χ θ τ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator