NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  mpbir3an GIF version

Theorem mpbir3an 1134
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.)
Hypotheses
Ref Expression
mpbir3an.1 ψ
mpbir3an.2 χ
mpbir3an.3 θ
mpbir3an.4 (φ ↔ (ψ χ θ))
Assertion
Ref Expression
mpbir3an φ

Proof of Theorem mpbir3an
StepHypRef Expression
1 mpbir3an.1 . . 3 ψ
2 mpbir3an.2 . . 3 χ
3 mpbir3an.3 . . 3 θ
41, 2, 33pm3.2i 1130 . 2 (ψ χ θ)
5 mpbir3an.4 . 2 (φ ↔ (ψ χ θ))
64, 5mpbir 200 1 φ
Colors of variables: wff setvar class
Syntax hints:  wb 176   w3a 934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360  df-3an 936
This theorem is referenced by:  sfin01  4529  pw1fnf1o  5856
  Copyright terms: Public domain W3C validator