| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > mpbir3an | GIF version | ||
| Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) |
| Ref | Expression |
|---|---|
| mpbir3an.1 | ⊢ ψ |
| mpbir3an.2 | ⊢ χ |
| mpbir3an.3 | ⊢ θ |
| mpbir3an.4 | ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) |
| Ref | Expression |
|---|---|
| mpbir3an | ⊢ φ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpbir3an.1 | . . 3 ⊢ ψ | |
| 2 | mpbir3an.2 | . . 3 ⊢ χ | |
| 3 | mpbir3an.3 | . . 3 ⊢ θ | |
| 4 | 1, 2, 3 | 3pm3.2i 1130 | . 2 ⊢ (ψ ∧ χ ∧ θ) |
| 5 | mpbir3an.4 | . 2 ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) | |
| 6 | 4, 5 | mpbir 200 | 1 ⊢ φ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: sfin01 4529 pw1fnf1o 5856 |
| Copyright terms: Public domain | W3C validator |