New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > mpbir3an | GIF version |
Description: Detach a conjunction of truths in a biconditional. (Contributed by NM, 16-Sep-2011.) |
Ref | Expression |
---|---|
mpbir3an.1 | ⊢ ψ |
mpbir3an.2 | ⊢ χ |
mpbir3an.3 | ⊢ θ |
mpbir3an.4 | ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) |
Ref | Expression |
---|---|
mpbir3an | ⊢ φ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpbir3an.1 | . . 3 ⊢ ψ | |
2 | mpbir3an.2 | . . 3 ⊢ χ | |
3 | mpbir3an.3 | . . 3 ⊢ θ | |
4 | 1, 2, 3 | 3pm3.2i 1130 | . 2 ⊢ (ψ ∧ χ ∧ θ) |
5 | mpbir3an.4 | . 2 ⊢ (φ ↔ (ψ ∧ χ ∧ θ)) | |
6 | 4, 5 | mpbir 200 | 1 ⊢ φ |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: sfin01 4529 pw1fnf1o 5856 |
Copyright terms: Public domain | W3C validator |