New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3jca | GIF version |
Description: Join consequents with conjunction. (Contributed by NM, 9-Apr-1994.) |
Ref | Expression |
---|---|
3jca.1 | ⊢ (φ → ψ) |
3jca.2 | ⊢ (φ → χ) |
3jca.3 | ⊢ (φ → θ) |
Ref | Expression |
---|---|
3jca | ⊢ (φ → (ψ ∧ χ ∧ θ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3jca.1 | . . 3 ⊢ (φ → ψ) | |
2 | 3jca.2 | . . 3 ⊢ (φ → χ) | |
3 | 3jca.3 | . . 3 ⊢ (φ → θ) | |
4 | 1, 2, 3 | jca31 520 | . 2 ⊢ (φ → ((ψ ∧ χ) ∧ θ)) |
5 | df-3an 936 | . 2 ⊢ ((ψ ∧ χ ∧ θ) ↔ ((ψ ∧ χ) ∧ θ)) | |
6 | 4, 5 | sylibr 203 | 1 ⊢ (φ → (ψ ∧ χ ∧ θ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∧ w3a 934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
This theorem is referenced by: 3jcad 1133 mpbir3and 1135 syl3anbrc 1136 3anim123i 1137 syl3anc 1182 syl13anc 1184 syl31anc 1185 syl113anc 1194 syl131anc 1195 syl311anc 1196 syl33anc 1197 syl133anc 1205 syl313anc 1206 syl331anc 1207 syl333anc 1214 3jaob 1244 mp3and 1280 1cvsfin 4543 |
Copyright terms: Public domain | W3C validator |