New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3orcomb | GIF version |
Description: Commutation law for triple disjunction. (Contributed by Scott Fenton, 20-Apr-2011.) |
Ref | Expression |
---|---|
3orcomb | ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ χ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 376 | . . 3 ⊢ ((ψ ∨ χ) ↔ (χ ∨ ψ)) | |
2 | 1 | orbi2i 505 | . 2 ⊢ ((φ ∨ (ψ ∨ χ)) ↔ (φ ∨ (χ ∨ ψ))) |
3 | 3orass 937 | . 2 ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) | |
4 | 3orass 937 | . 2 ⊢ ((φ ∨ χ ∨ ψ) ↔ (φ ∨ (χ ∨ ψ))) | |
5 | 2, 3, 4 | 3bitr4i 268 | 1 ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ χ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-3or 935 |
This theorem is referenced by: eueq3 3012 |
Copyright terms: Public domain | W3C validator |