New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > orbi2i | GIF version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 | ⊢ (φ ↔ ψ) |
Ref | Expression |
---|---|
orbi2i | ⊢ ((χ ∨ φ) ↔ (χ ∨ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 ⊢ (φ ↔ ψ) | |
2 | 1 | biimpi 186 | . . 3 ⊢ (φ → ψ) |
3 | 2 | orim2i 504 | . 2 ⊢ ((χ ∨ φ) → (χ ∨ ψ)) |
4 | 1 | biimpri 197 | . . 3 ⊢ (ψ → φ) |
5 | 4 | orim2i 504 | . 2 ⊢ ((χ ∨ ψ) → (χ ∨ φ)) |
6 | 3, 5 | impbii 180 | 1 ⊢ ((χ ∨ φ) ↔ (χ ∨ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 |
This theorem is referenced by: orbi1i 506 orbi12i 507 orass 510 or4 514 or42 515 orordir 517 dn1 932 3orcomb 944 excxor 1309 cad1 1398 nf4 1868 19.44 1877 exmidne 2523 r19.30 2757 sspsstri 3372 unass 3421 undi 3503 undif3 3516 undif4 3608 ssunpr 3869 sspr 3870 sstp 3871 iinun2 4033 iinuni 4050 axtyplowerprim 4095 pwadjoin 4120 nnsucelrlem2 4426 ltfintrilem1 4466 nnadjoin 4521 dfphi2 4570 phi011lem1 4599 clos1baseima 5884 clos1basesucg 5885 fce 6189 |
Copyright terms: Public domain | W3C validator |