NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  orbi2i GIF version

Theorem orbi2i 505
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
Hypothesis
Ref Expression
orbi2i.1 (φψ)
Assertion
Ref Expression
orbi2i ((χ φ) ↔ (χ ψ))

Proof of Theorem orbi2i
StepHypRef Expression
1 orbi2i.1 . . . 4 (φψ)
21biimpi 186 . . 3 (φψ)
32orim2i 504 . 2 ((χ φ) → (χ ψ))
41biimpri 197 . . 3 (ψφ)
54orim2i 504 . 2 ((χ ψ) → (χ φ))
63, 5impbii 180 1 ((χ φ) ↔ (χ ψ))
Colors of variables: wff setvar class
Syntax hints:  wb 176   wo 357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-or 359
This theorem is referenced by:  orbi1i  506  orbi12i  507  orass  510  or4  514  or42  515  orordir  517  dn1  932  3orcomb  944  excxor  1309  cad1  1398  nf4  1868  19.44  1877  exmidne  2523  r19.30  2757  sspsstri  3372  unass  3421  undi  3503  undif3  3516  undif4  3608  ssunpr  3869  sspr  3870  sstp  3871  iinun2  4033  iinuni  4050  axtyplowerprim  4095  pwadjoin  4120  nnsucelrlem2  4426  ltfintrilem1  4466  nnadjoin  4521  dfphi2  4570  phi011lem1  4599  clos1baseima  5884  clos1basesucg  5885  fce  6189
  Copyright terms: Public domain W3C validator