New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > 3orass | GIF version |
Description: Associative law for triple disjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3orass | ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3or 935 | . 2 ⊢ ((φ ∨ ψ ∨ χ) ↔ ((φ ∨ ψ) ∨ χ)) | |
2 | orass 510 | . 2 ⊢ (((φ ∨ ψ) ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) | |
3 | 1, 2 | bitri 240 | 1 ⊢ ((φ ∨ ψ ∨ χ) ↔ (φ ∨ (ψ ∨ χ))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∨ wo 357 ∨ w3o 933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-or 359 df-3or 935 |
This theorem is referenced by: 3orrot 940 3orcoma 942 3orcomb 944 3mix1 1124 ecase23d 1285 cador 1391 moeq3 3014 lenltfin 4470 |
Copyright terms: Public domain | W3C validator |