Proof of Theorem eueq3
| Step | Hyp | Ref
| Expression |
| 1 | | eueq3.1 |
. . . 4
⊢ A ∈
V |
| 2 | 1 | eueq1 3010 |
. . 3
⊢ ∃!x x = A |
| 3 | | ibar 490 |
. . . . . 6
⊢ (φ → (x = A ↔
(φ ∧
x = A))) |
| 4 | | pm2.45 386 |
. . . . . . . . . 10
⊢ (¬ (φ ∨ ψ) → ¬ φ) |
| 5 | | eueq3.4 |
. . . . . . . . . . . 12
⊢ ¬ (φ ∧ ψ) |
| 6 | 5 | imnani 412 |
. . . . . . . . . . 11
⊢ (φ → ¬ ψ) |
| 7 | 6 | con2i 112 |
. . . . . . . . . 10
⊢ (ψ → ¬ φ) |
| 8 | 4, 7 | jaoi 368 |
. . . . . . . . 9
⊢ ((¬ (φ ∨ ψ) ∨ ψ) → ¬ φ) |
| 9 | 8 | con2i 112 |
. . . . . . . 8
⊢ (φ → ¬ (¬ (φ ∨ ψ) ∨ ψ)) |
| 10 | 4 | con2i 112 |
. . . . . . . . . 10
⊢ (φ → ¬ ¬ (φ ∨ ψ)) |
| 11 | 10 | bianfd 892 |
. . . . . . . . 9
⊢ (φ → (¬ (φ ∨ ψ) ↔ (¬ (φ ∨ ψ) ∧
x = B))) |
| 12 | 6 | bianfd 892 |
. . . . . . . . 9
⊢ (φ → (ψ ↔ (ψ ∧ x = C))) |
| 13 | 11, 12 | orbi12d 690 |
. . . . . . . 8
⊢ (φ → ((¬ (φ ∨ ψ) ∨ ψ) ↔ ((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 14 | 9, 13 | mtbid 291 |
. . . . . . 7
⊢ (φ → ¬ ((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C))) |
| 15 | | biorf 394 |
. . . . . . 7
⊢ (¬ ((¬
(φ ∨
ψ) ∧
x = B)
∨ (ψ
∧ x =
C)) → ((φ ∧ x = A) ↔
(((¬ (φ
∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C)) ∨ (φ ∧ x = A)))) |
| 16 | 14, 15 | syl 15 |
. . . . . 6
⊢ (φ → ((φ ∧ x = A) ↔
(((¬ (φ
∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C)) ∨ (φ ∧ x = A)))) |
| 17 | 3, 16 | bitrd 244 |
. . . . 5
⊢ (φ → (x = A ↔
(((¬ (φ
∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C)) ∨ (φ ∧ x = A)))) |
| 18 | | 3orrot 940 |
. . . . . 6
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ ((¬ (φ ∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C) ∨ (φ ∧ x = A))) |
| 19 | | df-3or 935 |
. . . . . 6
⊢ (((¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C) ∨
(φ ∧
x = A))
↔ (((¬ (φ ∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C)) ∨ (φ ∧ x = A))) |
| 20 | 18, 19 | bitri 240 |
. . . . 5
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ (((¬ (φ ∨ ψ) ∧ x = B) ∨ (ψ ∧ x = C)) ∨ (φ ∧ x = A))) |
| 21 | 17, 20 | syl6bbr 254 |
. . . 4
⊢ (φ → (x = A ↔
((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 22 | 21 | eubidv 2212 |
. . 3
⊢ (φ → (∃!x x = A ↔
∃!x((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 23 | 2, 22 | mpbii 202 |
. 2
⊢ (φ → ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
| 24 | | eueq3.3 |
. . . 4
⊢ C ∈
V |
| 25 | 24 | eueq1 3010 |
. . 3
⊢ ∃!x x = C |
| 26 | | ibar 490 |
. . . . . 6
⊢ (ψ → (x = C ↔
(ψ ∧
x = C))) |
| 27 | 6 | adantr 451 |
. . . . . . . . 9
⊢ ((φ ∧ x = A) →
¬ ψ) |
| 28 | | pm2.46 387 |
. . . . . . . . . 10
⊢ (¬ (φ ∨ ψ) → ¬ ψ) |
| 29 | 28 | adantr 451 |
. . . . . . . . 9
⊢ ((¬ (φ ∨ ψ) ∧
x = B)
→ ¬ ψ) |
| 30 | 27, 29 | jaoi 368 |
. . . . . . . 8
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B)) → ¬ ψ) |
| 31 | 30 | con2i 112 |
. . . . . . 7
⊢ (ψ → ¬ ((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B))) |
| 32 | | biorf 394 |
. . . . . . 7
⊢ (¬ ((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B)) → ((ψ ∧ x = C) ↔
(((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B))
∨ (ψ
∧ x =
C)))) |
| 33 | 31, 32 | syl 15 |
. . . . . 6
⊢ (ψ → ((ψ ∧ x = C) ↔
(((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B))
∨ (ψ
∧ x =
C)))) |
| 34 | 26, 33 | bitrd 244 |
. . . . 5
⊢ (ψ → (x = C ↔
(((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B))
∨ (ψ
∧ x =
C)))) |
| 35 | | df-3or 935 |
. . . . 5
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ (((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B))
∨ (ψ
∧ x =
C))) |
| 36 | 34, 35 | syl6bbr 254 |
. . . 4
⊢ (ψ → (x = C ↔
((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 37 | 36 | eubidv 2212 |
. . 3
⊢ (ψ → (∃!x x = C ↔
∃!x((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 38 | 25, 37 | mpbii 202 |
. 2
⊢ (ψ → ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
| 39 | | eueq3.2 |
. . . 4
⊢ B ∈
V |
| 40 | 39 | eueq1 3010 |
. . 3
⊢ ∃!x x = B |
| 41 | | ibar 490 |
. . . . . 6
⊢ (¬ (φ ∨ ψ) → (x = B ↔
(¬ (φ
∨ ψ) ∧ x = B))) |
| 42 | | simpl 443 |
. . . . . . . . 9
⊢ ((φ ∧ x = A) →
φ) |
| 43 | | simpl 443 |
. . . . . . . . 9
⊢ ((ψ ∧ x = C) →
ψ) |
| 44 | 42, 43 | orim12i 502 |
. . . . . . . 8
⊢ (((φ ∧ x = A) ∨ (ψ ∧ x = C)) → (φ ∨ ψ)) |
| 45 | 44 | con3i 127 |
. . . . . . 7
⊢ (¬ (φ ∨ ψ) → ¬ ((φ ∧ x = A) ∨ (ψ ∧ x = C))) |
| 46 | | biorf 394 |
. . . . . . 7
⊢ (¬ ((φ ∧ x = A) ∨ (ψ ∧ x = C)) → ((¬ (φ ∨ ψ) ∧
x = B)
↔ (((φ ∧ x = A) ∨ (ψ ∧ x = C)) ∨ (¬ (φ
∨ ψ)
∧ x =
B)))) |
| 47 | 45, 46 | syl 15 |
. . . . . 6
⊢ (¬ (φ ∨ ψ) → ((¬ (φ ∨ ψ) ∧
x = B)
↔ (((φ ∧ x = A) ∨ (ψ ∧ x = C)) ∨ (¬ (φ
∨ ψ)
∧ x =
B)))) |
| 48 | 41, 47 | bitrd 244 |
. . . . 5
⊢ (¬ (φ ∨ ψ) → (x = B ↔
(((φ ∧
x = A)
∨ (ψ
∧ x =
C)) ∨
(¬ (φ
∨ ψ) ∧ x = B)))) |
| 49 | | 3orcomb 944 |
. . . . . 6
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ ((φ ∧ x = A) ∨ (ψ ∧ x = C) ∨ (¬ (φ
∨ ψ)
∧ x =
B))) |
| 50 | | df-3or 935 |
. . . . . 6
⊢ (((φ ∧ x = A) ∨ (ψ ∧ x = C) ∨ (¬ (φ ∨ ψ) ∧
x = B))
↔ (((φ ∧ x = A) ∨ (ψ ∧ x = C)) ∨ (¬ (φ
∨ ψ)
∧ x =
B))) |
| 51 | 49, 50 | bitri 240 |
. . . . 5
⊢ (((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))
↔ (((φ ∧ x = A) ∨ (ψ ∧ x = C)) ∨ (¬ (φ
∨ ψ)
∧ x =
B))) |
| 52 | 48, 51 | syl6bbr 254 |
. . . 4
⊢ (¬ (φ ∨ ψ) → (x = B ↔
((φ ∧
x = A)
∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 53 | 52 | eubidv 2212 |
. . 3
⊢ (¬ (φ ∨ ψ) → (∃!x x = B ↔
∃!x((φ ∧ x = A) ∨ (¬ (φ ∨ ψ) ∧
x = B)
∨ (ψ
∧ x =
C)))) |
| 54 | 40, 53 | mpbii 202 |
. 2
⊢ (¬ (φ ∨ ψ) → ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C))) |
| 55 | 23, 38, 54 | ecase3 907 |
1
⊢ ∃!x((φ ∧ x = A) ∨ (¬ (φ
∨ ψ)
∧ x =
B) ∨
(ψ ∧
x = C)) |