| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > 3ancomb | GIF version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3ancomb | ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ χ ∧ ψ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3ancoma 941 | . 2 ⊢ ((φ ∧ ψ ∧ χ) ↔ (ψ ∧ φ ∧ χ)) | |
| 2 | 3anrot 939 | . 2 ⊢ ((ψ ∧ φ ∧ χ) ↔ (φ ∧ χ ∧ ψ)) | |
| 3 | 1, 2 | bitri 240 | 1 ⊢ ((φ ∧ ψ ∧ χ) ↔ (φ ∧ χ ∧ ψ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 ∧ w3a 934 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 df-3an 936 |
| This theorem is referenced by: 3simpb 953 |
| Copyright terms: Public domain | W3C validator |