NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  adantlll GIF version

Theorem adantlll 698
Description: Deduction adding a conjunct to antecedent. (Contributed by NM, 26-Dec-2004.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
Hypothesis
Ref Expression
adantl2.1 (((φ ψ) χ) → θ)
Assertion
Ref Expression
adantlll ((((τ φ) ψ) χ) → θ)

Proof of Theorem adantlll
StepHypRef Expression
1 simpr 447 . 2 ((τ φ) → φ)
2 adantl2.1 . 2 (((φ ψ) χ) → θ)
31, 2sylanl1 631 1 ((((τ φ) ψ) χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator