New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylanl1 | GIF version |
Description: A syllogism inference. (Contributed by NM, 10-Mar-2005.) |
Ref | Expression |
---|---|
sylanl1.1 | ⊢ (φ → ψ) |
sylanl1.2 | ⊢ (((ψ ∧ χ) ∧ θ) → τ) |
Ref | Expression |
---|---|
sylanl1 | ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanl1.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | anim1i 551 | . 2 ⊢ ((φ ∧ χ) → (ψ ∧ χ)) |
3 | sylanl1.2 | . 2 ⊢ (((ψ ∧ χ) ∧ θ) → τ) | |
4 | 2, 3 | sylan 457 | 1 ⊢ (((φ ∧ χ) ∧ θ) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: adantlll 698 adantllr 699 isocnv 5492 |
Copyright terms: Public domain | W3C validator |