New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > alsyl | GIF version |
Description: Theorem *10.3 in [WhiteheadRussell] p. 150. (Contributed by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
alsyl | ⊢ ((∀x(φ → ψ) ∧ ∀x(ψ → χ)) → ∀x(φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.33 568 | . 2 ⊢ (((φ → ψ) ∧ (ψ → χ)) → (φ → χ)) | |
2 | 1 | alanimi 1562 | 1 ⊢ ((∀x(φ → ψ) ∧ ∀x(ψ → χ)) → ∀x(φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∀wal 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: barbara 2301 |
Copyright terms: Public domain | W3C validator |