New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > ax-17 | GIF version |
Description: Axiom of Distinctness.
This axiom quantifies a variable over a formula
in which it does not occur. Axiom C5 in [Megill] p. 444 (p. 11 of the
preprint). Also appears as Axiom B6 (p. 75) of system S2 of [Tarski]
p. 77 and Axiom C5-1 of [Monk2] p. 113.
(See comments in ax17o 2157 about the logical redundancy of ax-17 1616 in the presence of our obsolete axioms.) This axiom essentially says that if x does not occur in φ, i.e. φ does not depend on x in any way, then we can add the quantifier ∀x to φ with no further assumptions. By sp 1747, we can also remove the quantifier (unconditionally). (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
ax-17 | ⊢ (φ → ∀xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . 2 wff φ | |
2 | vx | . . 3 setvar x | |
3 | 1, 2 | wal 1540 | . 2 wff ∀xφ |
4 | 1, 3 | wi 4 | 1 wff (φ → ∀xφ) |
Colors of variables: wff setvar class |
This axiom is referenced by: a17d 1617 ax17e 1618 nfv 1619 alimdv 1621 eximdv 1622 albidv 1625 exbidv 1626 alrimiv 1631 alrimdv 1633 19.9v 1664 spimvw 1669 equidOLD 1677 spnfwOLD 1692 spw 1694 19.3vOLD 1696 alcomiw 1704 hbn1w 1706 ax11wlem 1720 sp 1747 spOLD 1748 dvelimhw 1849 ax12olem1 1927 ax12olem2 1928 ax12olem6 1932 ax10lem2 1937 dvelimv 1939 a16g 1945 ax11a2 1993 cleljust 2014 dvelim 2016 ax16ALT 2047 ax11vALT 2097 dvelimALT 2133 ax17o 2157 dveeq2-o 2184 dveeq1-o 2187 ax11el 2194 ax11a2-o 2202 eujustALT 2207 cleqh 2450 abeq2 2459 hboprab 5563 mpteq12 5658 |
Copyright terms: Public domain | W3C validator |