NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  exintr GIF version

Theorem exintr 1614
Description: Introduce a conjunct in the scope of an existential quantifier. (Contributed by NM, 11-Aug-1993.)
Assertion
Ref Expression
exintr (x(φψ) → (xφx(φ ψ)))

Proof of Theorem exintr
StepHypRef Expression
1 exintrbi 1613 . 2 (x(φψ) → (xφx(φ ψ)))
21biimpd 198 1 (x(φψ) → (xφx(φ ψ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540  wex 1541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1542
This theorem is referenced by:  ceqsex  2894  r19.2z  3640  pwpw0  3856  pwsnALT  3883
  Copyright terms: Public domain W3C validator