| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > an31s | GIF version | ||
| Description: Swap two conjuncts in antecedent. (Contributed by NM, 31-May-2006.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| an31s | ⊢ (((χ ∧ ψ) ∧ φ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | an32s.1 | . . . 4 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
| 2 | 1 | exp31 587 | . . 3 ⊢ (φ → (ψ → (χ → θ))) |
| 3 | 2 | com13 74 | . 2 ⊢ (χ → (ψ → (φ → θ))) |
| 4 | 3 | imp31 421 | 1 ⊢ (((χ ∧ ψ) ∧ φ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |