| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > ancom1s | GIF version | ||
| Description: Inference commuting a nested conjunction in antecedent. (Contributed by NM, 24-May-2006.) (Proof shortened by Wolf Lammen, 24-Nov-2012.) |
| Ref | Expression |
|---|---|
| an32s.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| ancom1s | ⊢ (((ψ ∧ φ) ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.22 436 | . 2 ⊢ ((ψ ∧ φ) → (φ ∧ ψ)) | |
| 2 | an32s.1 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
| 3 | 1, 2 | sylan 457 | 1 ⊢ (((ψ ∧ φ) ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |