NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anass1rs GIF version

Theorem anass1rs 782
Description: Commutative-associative law for conjunction in an antecedent. (Contributed by Jeff Madsen, 19-Jun-2011.)
Hypothesis
Ref Expression
anass1rs.1 ((φ (ψ χ)) → θ)
Assertion
Ref Expression
anass1rs (((φ χ) ψ) → θ)

Proof of Theorem anass1rs
StepHypRef Expression
1 anass1rs.1 . . 3 ((φ (ψ χ)) → θ)
21anassrs 629 . 2 (((φ ψ) χ) → θ)
32an32s 779 1 (((φ χ) ψ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator