| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > imp31 | GIF version | ||
| Description: An importation inference. (Contributed by NM, 26-Apr-1994.) |
| Ref | Expression |
|---|---|
| imp3.1 | ⊢ (φ → (ψ → (χ → θ))) |
| Ref | Expression |
|---|---|
| imp31 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imp3.1 | . . 3 ⊢ (φ → (ψ → (χ → θ))) | |
| 2 | 1 | imp 418 | . 2 ⊢ ((φ ∧ ψ) → (χ → θ)) |
| 3 | 2 | imp 418 | 1 ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: imp41 576 imp5d 582 impl 603 anassrs 629 an31s 781 3imp 1145 3expa 1151 ncfinraise 4482 evenodddisj 4517 funimass3 5405 |
| Copyright terms: Public domain | W3C validator |