NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  imp31 GIF version

Theorem imp31 421
Description: An importation inference. (Contributed by NM, 26-Apr-1994.)
Hypothesis
Ref Expression
imp3.1 (φ → (ψ → (χθ)))
Assertion
Ref Expression
imp31 (((φ ψ) χ) → θ)

Proof of Theorem imp31
StepHypRef Expression
1 imp3.1 . . 3 (φ → (ψ → (χθ)))
21imp 418 . 2 ((φ ψ) → (χθ))
32imp 418 1 (((φ ψ) χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  imp41  576  imp5d  582  impl  603  anassrs  629  an31s  781  3imp  1145  3expa  1151  ncfinraise  4482  evenodddisj  4517  funimass3  5405
  Copyright terms: Public domain W3C validator