New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anabsan | GIF version |
Description: Absorption of antecedent with conjunction. (Contributed by NM, 24-Mar-1996.) |
Ref | Expression |
---|---|
anabsan.1 | ⊢ (((φ ∧ φ) ∧ ψ) → χ) |
Ref | Expression |
---|---|
anabsan | ⊢ ((φ ∧ ψ) → χ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.24 624 | . 2 ⊢ (φ ↔ (φ ∧ φ)) | |
2 | anabsan.1 | . 2 ⊢ (((φ ∧ φ) ∧ ψ) → χ) | |
3 | 1, 2 | sylanb 458 | 1 ⊢ ((φ ∧ ψ) → χ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anabss1 787 anabss5 789 anandis 803 |
Copyright terms: Public domain | W3C validator |