New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anandis | GIF version |
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
anandis.1 | ⊢ (((φ ∧ ψ) ∧ (φ ∧ χ)) → τ) |
Ref | Expression |
---|---|
anandis | ⊢ ((φ ∧ (ψ ∧ χ)) → τ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anandis.1 | . . 3 ⊢ (((φ ∧ ψ) ∧ (φ ∧ χ)) → τ) | |
2 | 1 | an4s 799 | . 2 ⊢ (((φ ∧ φ) ∧ (ψ ∧ χ)) → τ) |
3 | 2 | anabsan 786 | 1 ⊢ ((φ ∧ (ψ ∧ χ)) → τ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: 3impdi 1237 dff13 5472 isotr 5496 f1oiso 5500 |
Copyright terms: Public domain | W3C validator |