NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anandis GIF version

Theorem anandis 803
Description: Inference that undistributes conjunction in the antecedent. (Contributed by NM, 7-Jun-2004.)
Hypothesis
Ref Expression
anandis.1 (((φ ψ) (φ χ)) → τ)
Assertion
Ref Expression
anandis ((φ (ψ χ)) → τ)

Proof of Theorem anandis
StepHypRef Expression
1 anandis.1 . . 3 (((φ ψ) (φ χ)) → τ)
21an4s 799 . 2 (((φ φ) (ψ χ)) → τ)
32anabsan 786 1 ((φ (ψ χ)) → τ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  3impdi  1237  dff13  5472  isotr  5496  f1oiso  5500
  Copyright terms: Public domain W3C validator