New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > anabs7 | GIF version |
Description: Absorption into embedded conjunct. (Contributed by NM, 20-Jul-1996.) (Proof shortened by Wolf Lammen, 17-Nov-2013.) |
Ref | Expression |
---|---|
anabs7 | ⊢ ((ψ ∧ (φ ∧ ψ)) ↔ (φ ∧ ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 447 | . . 3 ⊢ ((φ ∧ ψ) → ψ) | |
2 | 1 | pm4.71ri 614 | . 2 ⊢ ((φ ∧ ψ) ↔ (ψ ∧ (φ ∧ ψ))) |
3 | 2 | bicomi 193 | 1 ⊢ ((ψ ∧ (φ ∧ ψ)) ↔ (φ ∧ ψ)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |