New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylanb | GIF version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 | ⊢ (φ ↔ ψ) |
sylanb.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylanb | ⊢ ((φ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 | . . 3 ⊢ (φ ↔ ψ) | |
2 | 1 | biimpi 186 | . 2 ⊢ (φ → ψ) |
3 | sylanb.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
4 | 2, 3 | sylan 457 | 1 ⊢ ((φ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: syl2anb 465 anabsan 786 eqtr2 2371 pm13.181 2590 rmob 3135 sspsstr 3375 disjne 3597 xpcan2 5059 fssres 5239 funbrfvb 5361 fvco 5384 fvimacnvi 5403 ffvresb 5432 leaddc2 6216 lemuc2 6255 |
Copyright terms: Public domain | W3C validator |