| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > sylanb | GIF version | ||
| Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
| Ref | Expression |
|---|---|
| sylanb.1 | ⊢ (φ ↔ ψ) |
| sylanb.2 | ⊢ ((ψ ∧ χ) → θ) |
| Ref | Expression |
|---|---|
| sylanb | ⊢ ((φ ∧ χ) → θ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sylanb.1 | . . 3 ⊢ (φ ↔ ψ) | |
| 2 | 1 | biimpi 186 | . 2 ⊢ (φ → ψ) |
| 3 | sylanb.2 | . 2 ⊢ ((ψ ∧ χ) → θ) | |
| 4 | 2, 3 | sylan 457 | 1 ⊢ ((φ ∧ χ) → θ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 177 df-an 360 |
| This theorem is referenced by: syl2anb 465 anabsan 786 eqtr2 2371 pm13.181 2590 rmob 3135 sspsstr 3375 disjne 3597 xpcan2 5059 fssres 5239 funbrfvb 5361 fvco 5384 fvimacnvi 5403 ffvresb 5432 leaddc2 6216 lemuc2 6255 |
| Copyright terms: Public domain | W3C validator |