NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  sylanb GIF version

Theorem sylanb 458
Description: A syllogism inference. (Contributed by NM, 18-May-1994.)
Hypotheses
Ref Expression
sylanb.1 (φψ)
sylanb.2 ((ψ χ) → θ)
Assertion
Ref Expression
sylanb ((φ χ) → θ)

Proof of Theorem sylanb
StepHypRef Expression
1 sylanb.1 . . 3 (φψ)
21biimpi 186 . 2 (φψ)
3 sylanb.2 . 2 ((ψ χ) → θ)
42, 3sylan 457 1 ((φ χ) → θ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by:  syl2anb  465  anabsan  786  eqtr2  2371  pm13.181  2590  rmob  3135  sspsstr  3375  disjne  3597  xpcan2  5059  fssres  5239  funbrfvb  5361  fvco  5384  fvimacnvi  5403  ffvresb  5432  leaddc2  6216  lemuc2  6255
  Copyright terms: Public domain W3C validator