NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  anc2r GIF version

Theorem anc2r 539
Description: Conjoin antecedent to right of consequent in nested implication. (Contributed by NM, 15-Aug-1994.)
Assertion
Ref Expression
anc2r ((φ → (ψχ)) → (φ → (ψ → (χ φ))))

Proof of Theorem anc2r
StepHypRef Expression
1 pm3.21 435 . . 3 (φ → (χ → (χ φ)))
21imim2d 48 . 2 (φ → ((ψχ) → (ψ → (χ φ))))
32a2i 12 1 ((φ → (ψχ)) → (φ → (ψ → (χ φ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator