NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  a2i GIF version

Theorem a2i 12
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
a2i.1 (φ → (ψχ))
Assertion
Ref Expression
a2i ((φψ) → (φχ))

Proof of Theorem a2i
StepHypRef Expression
1 a2i.1 . 2 (φ → (ψχ))
2 ax-2 7 . 2 ((φ → (ψχ)) → ((φψ) → (φχ)))
31, 2ax-mp 5 1 ((φψ) → (φχ))
Colors of variables: wff setvar class
Syntax hints:  wi 4
This theorem was proved from axioms:  ax-mp 5  ax-2 7
This theorem is referenced by:  imim2i  13  mpd  14  sylcom  25  pm2.43  47  pm2.18  102  ancl  529  ancr  532  anc2r  539  hbim1  1810  nfim1OLD  1812  dvelimv  1939  ralimia  2688  ceqsalg  2884  rspct  2949  elabgt  2983  peano2  4404  peano5  4410  spfininduct  4541  fvopab4t  5386
  Copyright terms: Public domain W3C validator