New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > a2i | GIF version |
Description: Inference derived from Axiom ax-2 7. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
a2i.1 | ⊢ (φ → (ψ → χ)) |
Ref | Expression |
---|---|
a2i | ⊢ ((φ → ψ) → (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | a2i.1 | . 2 ⊢ (φ → (ψ → χ)) | |
2 | ax-2 7 | . 2 ⊢ ((φ → (ψ → χ)) → ((φ → ψ) → (φ → χ))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((φ → ψ) → (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-2 7 |
This theorem is referenced by: imim2i 13 mpd 14 sylcom 25 pm2.43 47 pm2.18 102 ancl 529 ancr 532 anc2r 539 hbim1 1810 nfim1OLD 1812 dvelimv 1939 ralimia 2688 ceqsalg 2884 rspct 2949 elabgt 2983 peano2 4404 peano5 4410 spfininduct 4541 fvopab4t 5386 |
Copyright terms: Public domain | W3C validator |