New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sylan | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
sylan.1 | ⊢ (φ → ψ) |
sylan.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylan | ⊢ ((φ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan.1 | . 2 ⊢ (φ → ψ) | |
2 | sylan.2 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
3 | 2 | expcom 424 | . 2 ⊢ (χ → (ψ → θ)) |
4 | 1, 3 | mpan9 455 | 1 ⊢ ((φ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylanb 458 sylanbr 459 syl2an 463 sylanl1 631 sylanl2 632 mpanl1 661 mpanl2 662 adantll 694 adantlr 695 ancom1s 780 3adantl1 1111 3adantl2 1112 3adantl3 1113 syl3anl1 1230 syl3anl3 1232 syl3anl 1233 sbcom 2089 eupick 2267 sbcrext 3120 csbiebt 3173 csbnestgf 3185 reuss2 3536 opkthg 4132 iota2 4368 addcexg 4394 lefinlteq 4464 ltlefin 4469 tfinsuc 4499 eventfin 4518 oddtfin 4519 opelopabt 4700 imaexg 4747 ideqg2 4870 imadif 5172 fnbr 5186 feu 5243 fcnvres 5244 f1ss 5263 dffo2 5274 foco 5280 fun11iun 5306 ffoss 5315 fvco3 5385 fvopabg 5392 elpreima 5408 ffvelrn 5416 dffo4 5424 foelrn 5426 fsn2 5435 fvconst2g 5452 funfvima 5460 f1elima 5475 f1ocnvfv1 5477 f1ocnvfv2 5478 f1ofveu 5481 f1ocnvdm 5482 isocnv 5492 isores2 5494 isotr 5496 isoini 5498 f1oiso 5500 f1oiso2 5501 eloprabga 5579 mpteq12 5658 enprmaplem3 6079 ovmuc 6131 mucnc 6132 cenc 6182 leaddc1 6215 addccan2nc 6266 lecadd2 6267 nnc3n3p2 6280 nchoicelem4 6293 nchoicelem5 6294 nchoicelem8 6297 |
Copyright terms: Public domain | W3C validator |