![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > sylan | GIF version |
Description: A syllogism inference. (Contributed by NM, 21-Apr-1994.) (Proof shortened by Wolf Lammen, 22-Nov-2012.) |
Ref | Expression |
---|---|
sylan.1 | ⊢ (φ → ψ) |
sylan.2 | ⊢ ((ψ ∧ χ) → θ) |
Ref | Expression |
---|---|
sylan | ⊢ ((φ ∧ χ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan.1 | . 2 ⊢ (φ → ψ) | |
2 | sylan.2 | . . 3 ⊢ ((ψ ∧ χ) → θ) | |
3 | 2 | expcom 424 | . 2 ⊢ (χ → (ψ → θ)) |
4 | 1, 3 | mpan9 455 | 1 ⊢ ((φ ∧ χ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: sylanb 458 sylanbr 459 syl2an 463 sylanl1 631 sylanl2 632 mpanl1 661 mpanl2 662 adantll 694 adantlr 695 ancom1s 780 3adantl1 1111 3adantl2 1112 3adantl3 1113 syl3anl1 1230 syl3anl3 1232 syl3anl 1233 sbcom 2089 eupick 2267 sbcrext 3119 csbiebt 3172 csbnestgf 3184 reuss2 3535 opkthg 4131 iota2 4367 addcexg 4393 lefinlteq 4463 ltlefin 4468 tfinsuc 4498 eventfin 4517 oddtfin 4518 opelopabt 4699 imaexg 4746 ideqg2 4869 imadif 5171 fnbr 5185 feu 5242 fcnvres 5243 f1ss 5262 dffo2 5273 foco 5279 fun11iun 5305 ffoss 5314 fvco3 5384 fvopabg 5391 elpreima 5407 ffvelrn 5415 dffo4 5423 foelrn 5425 fsn2 5434 fvconst2g 5451 funfvima 5459 f1elima 5474 f1ocnvfv1 5476 f1ocnvfv2 5477 f1ofveu 5480 f1ocnvdm 5481 isocnv 5491 isores2 5493 isotr 5495 isoini 5497 f1oiso 5499 f1oiso2 5500 eloprabga 5578 mpteq12 5657 enprmaplem3 6078 ovmuc 6130 mucnc 6131 cenc 6181 leaddc1 6214 addccan2nc 6265 lecadd2 6266 nnc3n3p2 6279 nchoicelem4 6292 nchoicelem5 6293 nchoicelem8 6296 |
Copyright terms: Public domain | W3C validator |