New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > an32s | GIF version |
Description: Swap two conjuncts in antecedent. (Contributed by NM, 13-Mar-1996.) |
Ref | Expression |
---|---|
an32s.1 | ⊢ (((φ ∧ ψ) ∧ χ) → θ) |
Ref | Expression |
---|---|
an32s | ⊢ (((φ ∧ χ) ∧ ψ) → θ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | an32 773 | . 2 ⊢ (((φ ∧ χ) ∧ ψ) ↔ ((φ ∧ ψ) ∧ χ)) | |
2 | an32s.1 | . 2 ⊢ (((φ ∧ ψ) ∧ χ) → θ) | |
3 | 1, 2 | sylbi 187 | 1 ⊢ (((φ ∧ χ) ∧ ψ) → θ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: anass1rs 782 anabss1 787 ncfinlower 4484 nnadjoin 4521 nnpweq 4524 tfinnn 4535 fssres 5239 foco 5280 f1ores 5301 fun11iun 5306 fconstfv 5457 isocnv 5492 isomin 5497 f1oiso 5500 ncssfin 6152 nntccl 6171 tlecg 6231 ce2le 6234 nnc3n3p1 6279 nchoicelem12 6301 nchoicelem19 6308 |
Copyright terms: Public domain | W3C validator |