NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ancrb GIF version

Theorem ancrb 533
Description: Conjoin antecedent to right of consequent. (Contributed by NM, 25-Jul-1999.) (Proof shortened by Wolf Lammen, 24-Mar-2013.)
Assertion
Ref Expression
ancrb ((φψ) ↔ (φ → (ψ φ)))

Proof of Theorem ancrb
StepHypRef Expression
1 iba 489 . 2 (φ → (ψ ↔ (ψ φ)))
21pm5.74i 236 1 ((φψ) ↔ (φ → (ψ φ)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177  df-an 360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator