![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > iba | GIF version |
Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) |
Ref | Expression |
---|---|
iba | ⊢ (φ → (ψ ↔ (ψ ∧ φ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.21 435 | . 2 ⊢ (φ → (ψ → (ψ ∧ φ))) | |
2 | simpl 443 | . 2 ⊢ ((ψ ∧ φ) → ψ) | |
3 | 1, 2 | impbid1 194 | 1 ⊢ (φ → (ψ ↔ (ψ ∧ φ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 df-an 360 |
This theorem is referenced by: biantru 491 biantrud 493 ancrb 533 pm5.54 870 rbaibd 876 dedlem0a 918 unineq 3505 dfphi2 4569 opres 4978 resieq 4979 cores 5084 fvres 5342 fressnfv 5439 epelcres 6328 |
Copyright terms: Public domain | W3C validator |