| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > iba | GIF version | ||
| Description: Introduction of antecedent as conjunct. Theorem *4.73 of [WhiteheadRussell] p. 121. (Contributed by NM, 30-Mar-1994.) | 
| Ref | Expression | 
|---|---|
| iba | ⊢ (φ → (ψ ↔ (ψ ∧ φ))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | pm3.21 435 | . 2 ⊢ (φ → (ψ → (ψ ∧ φ))) | |
| 2 | simpl 443 | . 2 ⊢ ((ψ ∧ φ) → ψ) | |
| 3 | 1, 2 | impbid1 194 | 1 ⊢ (φ → (ψ ↔ (ψ ∧ φ))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 177 df-an 360 | 
| This theorem is referenced by: biantru 491 biantrud 493 ancrb 533 pm5.54 870 rbaibd 876 dedlem0a 918 unineq 3506 dfphi2 4570 opres 4979 resieq 4980 cores 5085 fvres 5343 fressnfv 5440 epelcres 6329 | 
| Copyright terms: Public domain | W3C validator |