New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > pm5.74i | GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (φ → (ψ ↔ χ)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((φ → ψ) ↔ (φ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (φ → (ψ ↔ χ)) | |
2 | pm5.74 235 | . 2 ⊢ ((φ → (ψ ↔ χ)) ↔ ((φ → ψ) ↔ (φ → χ))) | |
3 | 1, 2 | mpbi 199 | 1 ⊢ ((φ → ψ) ↔ (φ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: bitrd 244 imbi2i 303 bibi2d 309 ibib 331 ibibr 332 anclb 530 pm5.42 531 ancrb 533 cador 1391 cadan 1392 ax12bOLD 1690 equsalhw 1838 equsalhwOLD 1839 equsal 1960 sb6a 2116 ralbiia 2647 clos1induct 5881 |
Copyright terms: Public domain | W3C validator |